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Abstract. The correct Hamiltonian for an extended Hubbard model with quantum group
symmetry as introduced by Montorsi and Rasetti is derived fdp-dimensional lattice. It

is shown that the superconductisg/,(2) holds as a true quantum symmetry only for= 1

and that terms of higher order in the fermionic operators are needed in addition to phonons.
A discussion of quantum symmetries in general is given in a formalism that should be readily
accessible to non-Hopf algebraists.

1. Introduction

The Hubbard model is the simplest description of itinerant interacting electron systems. In
this article we will study generalizations of it onfa-dimensional lattice. The Hamiltonian
of the standard Hubbard model is given by [1]

Hip = HJ™™%9 1 1 (L)
where
[
HJ0 = —1 3" bl by (1.2)
{ij).o
|
Héloc) =u Z”iT"N — uZnia. (1.3)
i i,0

The one-dimensional model has been solved in [2]. It is well known that the Hubbard
model has aSU(2) x SU(2))/Z, symmetry [3,4]. This symmetry is the product of two
separateSU (2) symmetries: a magnetic and a superconductive one.

Montorsi and Rasetti [5] have introduced a very interesting generalization of the Hubbard
model by adding phonons. It turns out that the symmetry of the standard Hubbard model
is sometimes a special case of a more general quantum group symmetry. More precisely,
while the ‘magnetic’SU (2) symmetry is left unchanged, Montorsi and Rasetti claimed
that the generators of a ‘superconductivl/,(2) quantum group commute with their
extended Hamiltonian. We were able to verify this symmetry for an extended Hubbard
model on a one-dimensional latticewhile we found unsurmountable obstructions in the
higher dimensional case. As we will show this is essentially due to ordering problems.
Our task in this article is twofold: we will address quantum symmetries in general and we
will carefully re-examine the Hubbard model with phonons, deriving each term on physical
grounds to obtain the correct Hamiltonian.

1 The Hamiltonian in [5] is giverexplicitly only in the one-dimensional case.
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2. Quantum symmetries in quantum mechanics

The role of symmetries in quantum mechanics cannot be underestimated. Some models
(harmonic oscillator, hydrogen atom) were in fact first solved relying only on symmetries.
Symmetries, especially infinite dimensional ones, serve to provide the constants of motion
that are central to integrable models.

It is interesting to see what happens when the usual notion of symmetry is relaxed and
transformations given by a Hopf algebra (quantum group) are considered.

To simplify the discussion we will use a formalism that avoids direct reference to Hopf
algebraic methods. As given data we takeldopf algebra/, its dual Hopf algebréa/* and
a x-algebraA generated by quantum mechanical operators that act on a Hilbert Bpace
The generators of quantum symmetry transformations exigt iRlere we typically have a
one or more parameter deformation of the universal enveloping algebra of a Lie algebra in
mind. The elements of the dual Hopf algebra play the role of functions on the quantum
group. The only difference to the classical case is that these functions no longer commute.

2.1. Unitary representation

The elements of/ should act or{. We need a unitary representatipron H that realizes
U in the operator algebral. Such a representation shall be a linggsreserving map

p:U— A p(x):H—H o) = p(x*) (2.1)
that is also an algebra homomorphism
p(xy) = px)p(y). (2.2)

Here is an example:

Magnetic and superconductiv€U,(2). The algebra ofSU,(2) is generated byX™,
X~ =(X")* and H = H* with deformed commutation relations
H __ —H
[H, X*] = +2x*  [X*, X]= %
As can be checked by direct computation this algebra has the same representatior? by 2
matrices as the undeformeid/ (2), namely

Xt <8 é) X (?_ 8) H (é _01>. (2.4)

From this matrix representation we can find a unitary representation of the algebra (2.3) by
creation and annihilation operators using the following simple observation:

g € R\{O}. (2.3)

Let cf, ¢; be fermionic or bosonic creation and annihilation operators apnd n;;
numerical matrices with the same (finite) index set ascthe, then g -m -¢,c¢f - n-c] =
ch[m;n]-ec.

If we take for instancel.T € {bT,bI} andc; € {b4, b;} and the matrices from (2.4) we
find the generators of the ‘magneti€U (2):
pn(X*) =bTby pu(XT)=bTby  pu(H) = (byTby — b, Tby). (2.5)
Switchingb¢T < b, does not change the algebra of #ec (the b', b are fermionic!) but
gives another unitary representation—the ‘superconducBg;, (2):

ps(XT)=by"b,T p(XT)=biby  po(H) = (btTby +b,Tby - ). (2.6)

T Remark p(x)p(y) = p(z) & p(z) = p(xy) <z = xy, butnot ‘= z = xy’.
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(These expressions hold also fpr~ 1 because,d,,,/x(H)]3 = pm/s(H).) These generators
implement both (local)SU (2) and (local)SU, (2) for a single lattice site When we deal
with generators that act on thehole latticethe ‘¢’ reappears and consequently (global)
SU(2) and (global)SU,(2) no longer coincide.

Note In the following we will not write the symbolg’ explicitly; its presence is implied
by context.

2.2. Transformation of states and operators

The key to a simple description of quantum symmetries is the canonical elenig® of*
sometimes also called the ‘universal [6]

C=> e®f cueu (2.7)

Heree; and f7 are (formal) dual linear bases &f andi/* respectively. Everything else we
need to know abouf here is that it is invertible and unitary:

Cr=>egefr=Cct (2.8)
States|y) € H corresponding to a single sjtéransform via multiplication by:

1Y) = Cly). (2.9)
OperatorsO € A consequently transform by conjugation

O~ Ccoct=cocr. (2.10)

States and operators can have full quantum symmetries, i.e. they can be invariant under all
of U. This is the case if respectively:

Cly)y=1-1y)

coct=0-1

When we deal with a lattice, there isCa for each of its sites. Transformations of

several sites (the whole lattice), i.e. of statg$s"’) € H®" and operator©®™ ¢ A®V, are
also possible. These are performed with products (in the function part) @f the

C(N) ZC]_CZ...CN = Z €i1®eiz®...®€iN®fi1fi2...fiN (212)

01,02,.00,iN

(conditions forfull symmetry) (2.11)

so that
1My s c) |y 0y OW s M OM) Ny (2.13)
with (C™M)=t = ¢y'cyt, ... Cr* Note that the order of thé in ™) is important because

the £ (in the function part of’) are not commutative by assumption for a quantum group.
2.3. Full guantum symmetry

In the following sections we will be interested in quantum symmetries of the Hamiltonian.
A Hamiltonian’ € A has a full ‘local’ symmetry unde’ (at sitei) if

ChCTt=h-1. (2.14)
It consequently has a full ‘global’ symmetry undér(on the whole lattice) if
CMRECMY T =C1Cy. . .CyhCCRE, .. Cit=h - L. (2.15)

1 Statements for ‘single sites’ and ‘multiple sites’ of a lattice obviously apply also to a broader context of tensor
products of states—for instance to single/multi-particle states.
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In this formalism it is very easy to see that both conditions can also be expressed in terms
of commutators, namely

[Ci,h] =0 and L™ hl=0 (2.16)
respectively.

2.4. Specified transformations

Often it is important to describe transformations given by specific elements of the Hopf
algebral{. So far the transformations were unspecific; their result still contained a part in
U*, i.e. a ‘function on the quantum group’; for example

Cly) =D plenly) ® fle HRU and similarly ~ COC'e AQU*. (2.17)

A transformation specified by an elemente U/ is obtained by evaluating these function
parts onk; this operation will be denoted by,’. (You may think of it as ‘plugging-in’
of the transformation parameters.) The action (denoted-Byof « on a statdvys) is then
given by

koY) =Cle V) =kl¥) = plo)ly) (2.18)

simply becaus&€—being the canonical element—satisfiés = Y ¢ - f'(k) = « by
definition. Similarly

k>0 =COCY, (2.19)
S W/(N)) — C(N)|K|W(N>> (2.20)
P O(N) — C(N)O(N) (C(N))*1|K. (2.21)

The result of contracting the function part 6fY) = CiC,...Cy with « gives a
prescription (denoted bx“~Y (k) and called théN — 1)-fold coproduct) how to distribute
k over several tensor factors:

CM e = AN D) e UV, (2.22)

It is clear that there cannot be one simple rule for allfef-not even in the classical case;
A(k) =k ® 14+ 1® « for instance holds only for ‘infinitesimak. The added difference
of the quantum case is that the{x) will in general be not symmetric.

1 The coproductA did not enter the formalism as additional input here; it rather follows from Hopf algebra
axioms that

CiCalc =) e ®e; @ (f1 ) =) Alew) ® f* (k) = Ak)
ij k
C1CoCale = (A ® id)Ak) = (id ® A)A(k) = AP (k)

CiCo...Cxle = AV D (k).

The coproducts of a given Hopf algebra are part of the defining relations. Here are the coproducts for the generators
of the algebra (2.3):

AH) =H®1+1®H AXH =Xt @q 1?7+ 4"7 g x*.

Coproducts of other elements can be computed from this using the facitlimtan algebra homomorphism.
The other objects that constitute a Hopf algebra are the antigodmd the co-unite. They enter our
formalism viaC™1|, = Sk) and 1, = e(). Note thate(x) is a number. LetAk) = K1) @ K@);
then cOC7Y|, = > peNOp(Se)) @ (f1fH)(k) = plea)Op(Sk). This action and Hopf expressions
corresponding to equations (2.20)—(2.21) are discussed in [7], for example.
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2.5. Partial quantum symmetry

The full quantum symmetries (2.14) and (2.15) are equivalent to
ChC Yy =h-1, Yk el and CVRC"NY Y =h-1 Yk el (2.23)

respectively. We have seen that these full symmetries could be expressed in terms of
commutators. As a further illustration of the formalism we will briefly study the case where
x does not range over all @f but only over a subseP C I/. The question is: when is

ChC™ Yo =h-1, Vi € P (partial quantum symmetry)  (2.24)
equivalent to

[C,h]l. =0 Vk € P (2.25)
for an arbitrary Hamiltoniark? A sufficient condition is easily seen to be
ACl, =0 A1, =0 Vk € P (2.26)

for all operatorsA (e A ® U*). This can be translated into a condition on the coproducts
of elements inP:

AP)CPRU. (2.27)

3. A generalized Hubbard model
Following [5] we will retain the local electron term (1.3), and add to it the standard
Hamiltonian for the phonons and a phonon—electron interaction term

Hyyp = He(:oc) + Hpn + Hel_ph. (3.1)

We suppose that the phonons are described by a set of decoupled Einstein oscillators with
the same frequency

2
Hon=3 ( 2”1(4 n ;Mw2y3> (3.2)

i

where p; andy; obey canonical commutation relations as usual. The expression for the
phonon—electron term is the one given by Hubbard [1]

D * EZVZ i
Hel_ph = X]: Z”: dPrw*(r — Ry [ — 5 TV {R)}) | ¥(r — R))b],bis (3.3)

whereW (r — R;) is the Wannier electron wavefunction centred around the idR; atvhile

bjT.(,, b;, are fermionic creation and annihilation operators. (In this context the Wannier
functions will be approximated by atomic orbitals.) To take account of the ion oscillations
around their equilibrium positions, the arguments of the Wannier functions and of the
potential V in the integral must be shifted:

R — R+ yi (k=1,j,1).

The term obtained from the potenti® in (3.3) has a significant contribution only for
i = j =1 (i.e. neglecting allR; with [ # i in V) and results by linear variation in a local
electron—phonon interaction term [8, 9]

Hé:g(;)h =-A- Z(nm +ni)y; (3.4)

and a term that contributes toin (1.3). The non-local electron—phonon interaction term is
crucial in the approach of Montorsi and Rasetti. We would like to give a derivation leading
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directly to the exponential form, which is necessary for the quantum symmetry. (See [10]
for the derivation of a linear approximation.)

We shall retain only the nearest-neighbour tefiis in the kinetic energy term of (3.3);
this assumes negligible overlap between all other atomic orbitals:

HH = ZT bl big (3.5)

y¥Yjo
with T;; = TJT, given by
h?v?2
Tl-j:/dDr\I!*(r—R;—yi)( o )lli(r —Yj). (3.6)
Assuming that¥ has finite support, it is possible to shift the integration variable

r—r—R;—y,.

With this substitution7;; becomes a function only af;; = (R; + v;) — (R; + y;):

h?v?
T, = /dDr U*(r — a;;) <—2m) U(r) = T(a;). (3.7)
The atomic orbitals show an asymptotic exponential decay
W(r) ~ el (3.8)
and we have hence (approximately)
i h?v?
Va, T (a;}) _/dD r=aij), U*(r — a;j)—— W(r). (3.9)
i — ajj 2m

Again, due to the rapid exponentlal decay\b(r), we can neglect in |r — a;;| so that

Va,jT(al]) - _C |alj| T(al]) (310)
tj

which integrates to

T(a;;) = Toe 1!, (3.11)
la;j| = |R; — R; +y; —y;| can be expanded using; — y;| <« |R; — R;| such that finally
(R, — R)) )
Tij=texp| —¢-———+-— (v —yj) 3.12
J p< IR, — R,| Yi —Yj ( )
with a new constant = Toexp(—¢|R; — R;|). Note that the term
(R; — R;)
R, =—
! |R; — R;|

always has the same module and that in the one-dimensional case it just amounts to a sign.
|R; — R;| is the interatomic distance at equilibrium so that it does not deperid jonThe
complete non-local electron—phonon interaction term in the Hamiltonian is

HS =13 Y exple Ry; - (ui — yp)}bl, big (3.13)

(i,j) o
and the full Hamiltonian of the Hubbard model with phonons is

HHub—ManTnli _Mznla""Z( 12> _A'Z(niT_i_nii)yi

+<r > expleRy; - (yi — y,)}bj.ab,-g + HC>. (3.14)

(i<j) o
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The Hamiltonian considered in [5] is formally obtained (in the one-dimensional case—
see the remark below) from (3.14) by a similarity transformation (half of a Lang—Firsov
transformation [11]) on the fermionic operatdr}% andb;, only:

div = U(R)bis U™ (K) (3.15)
al, = U(w)bl, U (r) (3.16)
with a unitary operator
up = eXp<iﬂ . ZP/”M) (3.17)
l,o
that commutes with the generators magneticSU(2) and depends on a set of constant

parameterss®, k = 1,..., D. While this transformation does not change the number
operatorsyy andn;y, it results in an exponential factor jp — p; for

bl,bie = explik - (pi — p)lal,ais (3.18)
so that the hopping term is now given by
HYOH =1 3" > explc R - (yi — )} explis - (p; — pj)}al,aio + HC (3.19)
(i<j) o

or, combining the exponentials,

HJO® =13 Y expl-h¢ Ry - k]explc Ry; - (yi — y)) + i - (pi — pj)}a),aiq + HC.

(i<j) o

(3.20)

Remark Note that while they; commute Wlthbm, o, they do not commute with the

new fermionic creation and annihilation operatozﬁg a;; as defined in (3.15), (3.16).

The authors of [5], however, assumed commutativity between the fermionic operators and
coordinates of the ions. In order to be able to connect to their work we will formally replace
the y; in Hyyp With new coordinates; that do commute with thefa, ais. (The x; will

hence no longer commute with thléo, bi,.) This will of course modify the Hamiltonian.

The Hamiltonian that wevill work with in the next section is:

H = go© + g (non-log (3_21)
with
| (00 _MZ N, — an+2< Mo’x? ) Z(”T‘i‘”li)mt (3.22)
H Moo — 4 Z > exple Ry - (x; — x))} explik - (p; — pj)}al,aio + HC. (3.23)

(i<j) o

The relation of this Hamiltonian with the one of the Hubbard model with phonons (3.14)
will be discussed in section 5. The fact thét,, and H are inequivalent can, for instance,
be seen by noting that the expression

Tij = texpi Rij - (x; — x;)) explis - (p; — p;))

for the hopping amplitude in (3.23) does not satisfy the conditf_tpinz le so that
2 T,jaﬂ,am is no longer Hermitean.
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4. SuperconductiveU,su(2)

The local superconductivl, (su(2)) is given by

ps(XT) = K7 = b]b], = exp(—i® - p))aj,a], (4.1)
ps(X7) = KIH = by by = exp(i® - pajapy = ([(I(Jr))T (4.2)
ps(H) = 2K = njp +nyy — 1. (4.3)

These are the generators for transformations of an individual lattick sisedefined in (2.6).
They are expressed in terms of the operab@gsb}o. In order to compute the commutation
relations with Hamiltonian (3.21) it is necessary to express them in terms of operators
Ay, a}a as introduced in (3.15) and (3.16). The paramgeppearing in (3.17), on which
the transformation depends, is chosen here t@bh2 and, for the moment, it should be
regarded as a free parameter which will be determined by the commutation relations. We
will see later (4.33) that consistently with the choj@e= x made in equations (3.15) and
(3.16), the commutation relations will requife = 2. (Notice thatn;,, = ajga/[, = bfabla.)

To describe the symmetries of the Hubbard model with phonons it is necessary to
consider two distinct representations of the superconduéfiex (2)) for different lattice
sites. One £;") is equal top,, the other p;) differs from p, by a minus sign on the
generatorsy®:

P (XF) = £p(XH) Py (X7) = £ps(X7) Py (H) = ps(H). (4.4)
For each lattice sité a signo (/) € {1, —1} is chosen and the representatiofh or p;”
is associated to it depending on whetlagf) = 1 or o (I) = —1 respectively. The local

commutation relations are not affected by this choice. The sign will, however, be crucial
for the global commutation relations. Hence, for the moment we will not specify a rule for
assigning a representation to a given site, but we will see later (4.29) that sites corresponding
to nearest neighbours must have opposite representatiomsd p~. This is exactly what
happens in the classical case [3]. For orthogonal (square) lattices a choice of the sign which
implements this condition is

o) = (=) (4.5)
where ||l = Zf:l I, is the length of the index which labels the sité.
For the moment we will choose an arbitrary ordering of the lattice sites. Choosing an
ordering is necessary to be able to define a tensor product and hence to construct a global

symmetry. According to the definition of the coproductlin(su(2)) (see equation (2.22)
and footnote on p 848)

AXY) =e @ Xt + Xt @e (4.6)
AX) =e @ x~ + X~ @e @ = (A(XT)! (4.7)
AH =HQ1+1QH (4.8)

where the deformation parameter is chosen tg be & andwa is a complex parameter to
be determined by the commutation relations and through the representations obtain
the generators of global superconductiig(su(2))

K™ = ®pg’<’>(A(N‘1>(X+)) (4.9
1

KO = ®p§’<l>(A(N‘1)(X_)) — (KD)i (4.10)
1

K® — ®p§(’>(A<N—1>(H)) (4.11)
l
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where N is the number of lattice sites. Using (4.6)—(4.8) these generators are computed to
be

K — Z o) l—[ exp(aKfZ))K,(“ l—[ exp(—a*K,(Z)) (4.12)
1

r<l r>l

KO =3 "o [[expe k) Kk [ [exp—ak ) = (KT (4.13)
1

r<l r>l

and
K9 =3"K[. (4.14)
[

4.1. Local commutation relations

The local part of the Hamiltonian commutes with the local generators

(K7, H] = [k, H"9] = [K*, H"®] =0 (4.15)
if the following conditions hold
2\
P — TP (4.16)
u 1 5,5 5 U A2

4.2. Global commutation relations

The fact thatk © commutes withH ("°™1°¢ given by (3.23) is immediate. We must calculate

(K, Hroreo] — [Zom [Texpak K™ [ Texp—a"k;),
!

r<l r>l
£ Y expl Ry - (wi — @] expli - (p; — pj)]ajaam]. (4.18)
(i<j)y o
It can be seen that
[exp(—i® - p)), expl R;; - (x; — x))]] = 2sin3¢AR;; - ®) (51, — 81.4)

X eXp[=i® - p + ¢ Ry - (T — x))] (4.19)
laj,al,. ajsais + afyai] = =b.:(a),al, +afyaj)) (4.20)
expak?) = 14 2KP (1 — exp(—a/2)) + 2n;yn;; (cosha/2) — 1) (4.21)

and, using equation (4.21),
[exp(aK,™), a/TTaiT + a}ﬂm] = (a%am + ajlau)(fsz,_f — &)1 —e/?)
+(81,j(a}TaiTnN + n”a;iaw)
—81i(al,ainiy +nipal a; ) (€72 + €72 — 2). (4.22)
We introduce the abbreviation
Zij=o()exp[-i(® —K) - pi — ik p; + {Ryj - (x; — x))]
< [] expek) J] exp—a k). (4.23)

r<i,r#j r>i,r#j
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Splitting the commutators, evaluating the expressions that are obtained by the use of (4.19)—
(4.22), and using the delta functions which appear in (4.19), (4.20) and (4.22) to perform
some of the sums, it can be seen that (4.18) becomes
[K(Jr), H(non_loo] =t <Z> eXF(—Eé'Rij . n){(aha%a}lahamaﬂ — ajiaiTTaha;Taila”)
i<j

x[Z;j(2CcosHiR;; - ®¢h) — 2COSHAR;; - B¢h + 2a™)

+Z;:(2cosi3R;j - ®¢h) — 2CoSHAR;; - R¢h + 3a))]

+(aj¢a;¢a%aj¢ + ajlajia%ajl)exp(%Rij - ®rh)

x[Zij(exp(ze*) — 1) + Z;; (exp(—Ry; - ®¢h) exp(—3a) — )]

+(aiT¢alTTa}lai¢ + aLal.TTa}Ta,-T)eXFX—%RU - ®rh)

x[Z;;(exp(R;; - ®¢h) exp(3a*) — 1) + Zj; (exp(—3e0) — D]

+(al,al, — alial )[Zijexp3 Ry - ®CT) exp(3a®)

+Zjiexp(—3 Rij - ®¢h) exp(—30))])

+>° 3 o) exp(—h¢ Ry - k) exp(—i® - p))aj,al,

I (i j)i<l<j

< [ expak®) J] exp—*k)

r<l,r#i r>l,r#j
x[exp(e k") exp(—a* K7, explic - (pi — p))

+{Rij - (z; — mj)]a;Tam + “}¢aii + HC]. (4.24)

There are two sums containing six fermionic operators, four sums containing four fermionic
operators, and two sums containing two fermionic operators. These sums must all be
separately zero, because they depend on different numbers of such operators and hence are
linearly independent. Let us study the term contairr'tﬁﬁlgz}T —a;a;:
> (a},a], — al,a] D[ Z;;exp(A Ry - BER) expha) + Zjiexp(— L Ry - BLR) exp(—Sa)].
(i<i)

(4.25)
The above sum can vanish only if each term with fi¥ed is separately zero, because
there are no other terms which contaaihajT — “iTT“./Tv Therefore it is necessary that the
expression between the square brackets is zero. For this reason we must require

Zijexp(3R;; - ®h) exp(30™) + Zjiexp(—3 R;; - BERh) exp(—ze) = 0. (4.26)
This is equivalent to the set of equations

Zij=—Z; (4.27)

exp(3R;; - ®Ch) exp(3e*) = exp(— 3 Rij - Dch) exp(—3a) (4.28)
which in turn imply ¢, j are nearest neighbours)
o(i) =—0o(j) (4.29)
expl-i(® — k) - p; — ik - p; + {Ryj - (zi — x))]

=exp[-i(® —K)-p; —ik-pi + {Ryj « (x; — )] (4.30)

[Texpek) ] exp—a*k@)= ] expak!)[]e(-a"k) (4.31)
r<i r>ir#j r<jr#i r>j

exp(—2ilma)(exp(3 R;; - ®¢T) exp(3 Rea) — exp(— S R;; - ®¢h) exp(—3 Rea)) = 0.
(4.32)
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Equation (4.29) means that nearest neighbours must have opposite signs. As we have
already anticipated, this means that in order for the global commutation relations to hold,
it should be possible to see the lattiseon which the model is defined, as the sum of two
lattices A1, Ay, such that nearest neighbours are always on different lattices. This gives a
restriction on the possible lattices, e.g. a triangular lattice could not be chosen.

Equation (4.30) impliesx — & = —k and hence

2k = P. (4.33)
This is one condition that must be satisfied for expression (4.25) to vanish. In particular it
fixes the parameter of the transformation (3.17). It turns out, that the parameter has to be
the same as the one used to transform the fermionic operators in the Hamiltonian.

Equation (4.32) implies

Rea = —R;; - ®¢h. (4.34)
This is the second condition which must be satisfied for expression (4.25) to vanish. It is
important to notice that it is possible to fulfil this relation only if the ordering of the lattice
sites is chosen to be the lexicographic one. So this imposes a first restriction on the ordering
of the sites.

The strongest relation is (4.31)—it depends crucially on the ordering chosen for the
lattice sites. In order for (4.31) to hold it is necessary that

1_[ explak®) = H exp(—a*K9). (4.35)
i<r<j i<r<j
Let us apply (4.21) to expand the exponentials. Then we obtain an expression of the type
1+20-e?) Y KP4 =1420-e72) Y KO+ (4.36)
i<r<j i<r<j

(Here the terms which are indicated with * are at least quadratic in th€“ and therefore
are independent of the first-order terms which have been written.) Equation (4.36) shows
that in order for relation (4.35) to hold, it is necessary that
e =¢"/?= Re(a) = 0.

But this would mean that the coproduct should be symmetric, and this is against the
hypothesis that there is a true quantum symmetry.

This shows that we must look for a condition on the ordering of the lattice sites, so that
we do not need to require (4.35): there cannot be anyrsitdich satisfies the condition
i <r < j for any couple of nearest neighbouts. In other words it is necessary that if
i, j is a couple of nearest neighbours then

(i<r=>j<rni>r=j2>r) vr. (4.37)

However, condition (4.37) implies that the lattiaeon which the Hubbard model is defined
is one dimensional, and that the ‘normal’ ordering of the sites is chosen, in which the sites
are numbered from left to right in increasing or decreasing order.

It can be verified immediately that condition (4.37¥i#ficientto guarantee that the sum
with >, Z(imkkj’ is not present, because there is no longer asgtisfyingi </ < j.
In fact it can be verified with arguments similar to the ones used to study the term (4.25)
that (4.37) is alsmecessaryfor such a sum to vanish. Because of (4.31) and (4.30) it
is possible to combine the terms which contain the same products of fermionic operators.
Further, it can be seen immediately, that conditions (4.29), (4.33), (4.34) and (4.37) are
also necessary and sufficient for the sums with four and with six fermionic operators to
vanish. Thus in order for the Hamiltoniai™°™'°© (3.23) to commute with the generators
(4.12)—(4.14) ofU,(su(2)) the conditions (4.29), (4.37), (4.33), (4.34) are necessary and
sufficient.
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5. Discussion

The computation of the previous section has shown that the Hamiltaiiagiven for a
D-dimensional lattice in (3.21)—(3.23), commutes with the generators of (glohal)(2),

g = ¢, provided that local conditions (4.16), (4.17), global conditions (4.33), (4.34) and
eitherD = 1 or @ = 0 hold. (We will only consider Inw) = O here.) We are now in a
position to comment on the symmetrjes various Hamiltonians derived from the Hubbard
model:

Huup (3.14) coincides with (3.21)—(3.23) for the particular choice of parameter0.

The global conditions (4.33), (4.34) imp@® = 0, « = 0 and hencey = 1. The local
conditions (4.16), (4.17) impl\ = 0 andu = u/2. We conclude that the Hubbard model
with phonons (3.14) has no true quantum symmetry—not even in the one-dimensional case;
it has an ordinansU (2) symmetry provided that there is no local electron—phonon coupling
(A=0).

The HamiltonianH (3.21) studied in the previous section and considered by [5] is
formally obtained from the Hubbard model with phonons by a Lang—Firsov transformation
on the fermionic operators only. (See remark at the end of section 3.) The essential
difference betweettly, and H is that Hyy, uses coordinateg; that commute witrbja, bis
while H is written in terms of new coordinates that commute wifp anda;, (and not

with !, b;,). To be able to compare the two Hamiltonians we have to relate the sets of
coordinates. This is simply done by a Lang-Firsov transformat{eae (3.15)—(3.17))

x; = U(k)yiU (k). (5.1)
The new coordinates are found to be
ri =1Y; + EK, Z Nis (52)

i.e. the position of the ion at lattice sites shifted according to the number of electrons at
that site. Expressingf in terms ofy;, bl b;, we find

10’

2
Hy_sym=u’' Z”i?nu —u Znia + Z <2pﬂll + ;szyl?) - Z(”m + 1)y

+<r Y Y exPeRy - i —y)texp(—¢hR,; - Kb bis
(

i<j) o

X(1+ (exqfﬁle ‘K) — 1)”1‘770)(1—'— (eX[X—CER,'j cK) — 1)”]’,70') + HC)

(5.3)
with a set of new parameters
XN =\—Mo’hk (5.4)
u =u—2h\- k+ Mwo’h%c? (5.5)
W =pu+hX Kk —1/2Mw’h%c?. (5.6)

The model given byH,_sym (5.3) has a true quantum symmetry (in the one-dimensional
case). The local conditions (4.16), (4.17) for quantum symmetry expressed in terms of the
new parameters are

AN=0 w=u'/2 (5.7)
There is apparently no local coupling to the phonons and the condition for symmetry is
‘half filling’ as in the standard Hubbard model.

T The Hamiltonian will commute witlall elements o/, SU (2) provided that its generators do so; this is equivalent
to a full quantum symmetry (under quantum adjoint action), see section 2.
t This observation is also supported by the choice& &, K,°.
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