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On quantum groups in the Hubbard model with phonons
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Professor Wess, Theresienstraße 37, D-80333 München, Germany

Received 17 October 1995

Abstract. The correct Hamiltonian for an extended Hubbard model with quantum group
symmetry as introduced by Montorsi and Rasetti is derived for aD-dimensional lattice. It
is shown that the superconductingSUq (2) holds as a true quantum symmetry only forD = 1
and that terms of higher order in the fermionic operators are needed in addition to phonons.
A discussion of quantum symmetries in general is given in a formalism that should be readily
accessible to non-Hopf algebraists.

1. Introduction

The Hubbard model is the simplest description of itinerant interacting electron systems. In
this article we will study generalizations of it on aD-dimensional lattice. The Hamiltonian
of the standard Hubbard model is given by [1]

HHub = H
(non−loc)
el +H

(loc)
el (1.1)

where

H
(non−loc)
el = −t

∑
〈i,j〉,σ

b
†
iσ bjσ (1.2)

H
(loc)
el = u

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ . (1.3)

The one-dimensional model has been solved in [2]. It is well known that the Hubbard
model has a(SU(2) × SU(2))/Z2 symmetry [3, 4]. This symmetry is the product of two
separateSU(2) symmetries: a magnetic and a superconductive one.

Montorsi and Rasetti [5] have introduced a very interesting generalization of the Hubbard
model by adding phonons. It turns out that the symmetry of the standard Hubbard model
is sometimes a special case of a more general quantum group symmetry. More precisely,
while the ‘magnetic’SU(2) symmetry is left unchanged, Montorsi and Rasetti claimed
that the generators of a ‘superconductive’SUq(2) quantum group commute with their
extended Hamiltonian. We were able to verify this symmetry for an extended Hubbard
model on a one-dimensional lattice†, while we found unsurmountable obstructions in the
higher dimensional case. As we will show this is essentially due to ordering problems.
Our task in this article is twofold: we will address quantum symmetries in general and we
will carefully re-examine the Hubbard model with phonons, deriving each term on physical
grounds to obtain the correct Hamiltonian.

† The Hamiltonian in [5] is givenexplicitly only in the one-dimensional case.
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2. Quantum symmetries in quantum mechanics

The role of symmetries in quantum mechanics cannot be underestimated. Some models
(harmonic oscillator, hydrogen atom) were in fact first solved relying only on symmetries.
Symmetries, especially infinite dimensional ones, serve to provide the constants of motion
that are central to integrable models.

It is interesting to see what happens when the usual notion of symmetry is relaxed and
transformations given by a Hopf algebra (quantum group) are considered.

To simplify the discussion we will use a formalism that avoids direct reference to Hopf
algebraic methods. As given data we take a∗-Hopf algebraU , its dual Hopf algebraU∗ and
a ∗-algebraA generated by quantum mechanical operators that act on a Hilbert spaceH.
The generators of quantum symmetry transformations exist inU . Here we typically have a
one or more parameter deformation of the universal enveloping algebra of a Lie algebra in
mind. The elements of the dual Hopf algebraU∗ play the role of functions on the quantum
group. The only difference to the classical case is that these functions no longer commute.

2.1. Unitary representation

The elements ofU should act onH. We need a unitary representationρ on H that realizes
U in the operator algebraA. Such a representation shall be a linear∗-preserving map

ρ : U → A ρ(x) : H → H ρ(x)† = ρ(x∗) (2.1)

that is also an algebra homomorphism†
ρ(xy) = ρ(x)ρ(y). (2.2)

Here is an example:

Magnetic and superconductiveSU(q)(2). The algebra ofSUq(2) is generated byX+,
X− = (X+)∗ andH = H ∗ with deformed commutation relations

[H,X±] = ±2X± [X+, X−] = qH − q−H

q − q−1
q ∈ R\{0}. (2.3)

As can be checked by direct computation this algebra has the same representation by 2× 2
matrices as the undeformedSU(2), namely

X+ 7→
(

0 1
0 0

)
X− 7→

(
0 0
1 0

)
H 7→

(
1 0
0 −1

)
. (2.4)

From this matrix representation we can find a unitary representation of the algebra (2.3) by
creation and annihilation operators using the following simple observation:

Let c†i , ci be fermionic or bosonic creation and annihilation operators andmij , nij
numerical matrices with the same (finite) index set as thec†, c, then [c† ·m · c, c† · n · c] =
c† · [m; n] · c.

If we take for instancec†i ∈ {b†
↑, b

†
↓} andci ∈ {b↑, b↓} and the matrices from (2.4) we

find the generators of the ‘magnetic’SU(2):

ρm(X
+) = b↑†b↓ ρm(X

−) = b↓†b↑ ρm(H) = (b↑†b↑ − b↓†b↓). (2.5)

Switchingb↓† ↔ b↓ does not change the algebra of thec†, c (the b†, b are fermionic!) but
gives another unitary representation—the ‘superconductive’SU(q)(2):

ρs(X
+) = b↑†b↓† ρs(X

−) = b↓b↑ ρs(H) = (b↑†b↑ + b↓†b↓ − 1). (2.6)

† Remark. ρ(x)ρ(y) = ρ(z) ⇔ ρ(z) = ρ(xy) ⇐ z = xy, but not: ‘⇒ z = xy’.
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(These expressions hold also forq 6= 1 because [ρm/s(H)]3 = ρm/s(H).) These generators
implement both (local)SU(2) and (local)SUq(2) for a single lattice site. When we deal
with generators that act on thewhole lattice the ‘q ’ reappears and consequently (global)
SU(2) and (global)SUq(2) no longer coincide.

Note. In the following we will not write the symbol ‘ρ’ explicitly; its presence is implied
by context.

2.2. Transformation of states and operators

The key to a simple description of quantum symmetries is the canonical element ofU ⊗U∗

sometimes also called the ‘universalT ’ [6]

C ≡
∑
i

ei ⊗ f i ∈ U ⊗ U∗. (2.7)

Hereei andf i are (formal) dual linear bases ofU andU∗ respectively. Everything else we
need to know aboutC here is that it is invertible and unitary:

C∗ ≡
∑
i

e∗i ⊗ f i∗ = C−1. (2.8)

States|ψ〉 ∈ H corresponding to a single site† transform via multiplication byC:

|ψ〉 7→ C|ψ〉. (2.9)

OperatorsO ∈ A consequently transform by conjugation

O 7→ COC−1 = COC∗. (2.10)

States and operators can have full quantum symmetries, i.e. they can be invariant under all
of U . This is the case if respectively:

C|ψ〉 = 1 · |ψ〉
COC−1 = O · 1

(conditions forfull symmetry). (2.11)

When we deal with a lattice, there is aCi for each of its sitesi. Transformations of
several sites (the whole lattice), i.e. of states|ψ(N)〉 ∈ H⊗N and operatorsO(N) ∈ A⊗N , are
also possible. These are performed with products (in the function part) of theCi ,

C(N) = C1C2 . . . CN ≡
∑

i1,i2,...,iN

ei1 ⊗ ei2 ⊗ . . .⊗ eiN ⊗ f i1f i2 . . . f iN (2.12)

so that

|ψ(N)〉 7→ C(N)|ψ(N)〉 O(N) 7→ C(N)O(N)(C(N))−1 (2.13)

with (C(N))−1 = C−1
N C−1

N−1 . . . C−1
1 . Note that the order of theCi in C(N) is important because

thef i (in the function part ofC) are not commutative by assumption for a quantum group.

2.3. Full quantum symmetry

In the following sections we will be interested in quantum symmetries of the Hamiltonian.
A Hamiltonianh ∈ A has a full ‘local’ symmetry underU (at sitei) if

CihC−1
i = h · 1. (2.14)

It consequently has a full ‘global’ symmetry underU (on the whole lattice) if

C(N)h(C(N))−1 = C1C2 . . . CNhC−1
N C−1

N−1 . . . C−1
1 = h · 1. (2.15)

† Statements for ‘single sites’ and ‘multiple sites’ of a lattice obviously apply also to a broader context of tensor
products of states—for instance to single/multi-particle states.
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In this formalism it is very easy to see that both conditions can also be expressed in terms
of commutators, namely

[Ci , h] = 0 and [C(N), h] = 0 (2.16)

respectively.

2.4. Specified transformations

Often it is important to describe transformations given by specific elements of the Hopf
algebraU . So far the transformations were unspecific; their result still contained a part in
U∗, i.e. a ‘function on the quantum group’; for example

C|ψ〉 ≡
∑
i

ρ(ei)|ψ〉 ⊗ f i ∈ H ⊗ U∗ and similarly COC−1 ∈ A ⊗ U∗. (2.17)

A transformation specified by an elementκ ∈ U is obtained by evaluating these function
parts onκ; this operation will be denoted by ‘|κ ’. (You may think of it as ‘plugging-in’
of the transformation parameters.) The action (denoted by ‘F’) of κ on a state|ψ〉 is then
given by

κ F |ψ〉 = C|κ |ψ〉 = κ|ψ〉 ≡ ρ(κ)|ψ〉 (2.18)

simply becauseC—being the canonical element—satisfiesC|κ = ∑
i ei · f i(κ) = κ by

definition. Similarly

κ F O = COC−1|κ (2.19)

κ F |ψ(N)〉 = C(N)|κ |ψ(N)〉 (2.20)

κ F O(N) = C(N)O(N)(C(N))−1|κ . (2.21)

The result of contracting the function part ofC(N) = C1C2 . . . CN with κ gives a
prescription (denoted by1(N−1)(κ) and called the(N−1)-fold coproduct†) how to distribute
κ over several tensor factors:

C(N)|κ = 1(N−1)(κ) ∈ U⊗N. (2.22)

It is clear that there cannot be one simple rule for all ofU—not even in the classical case;
1(κ) = κ ⊗ 1 + 1 ⊗ κ for instance holds only for ‘infinitesimal’κ. The added difference
of the quantum case is that then1(κ) will in general be not symmetric.

† The coproduct1 did not enter the formalism as additional input here; it rather follows from Hopf algebra
axioms that

C1C2|κ ≡
∑
i,j

ei ⊗ ej ⊗ (f if j )(κ) =
∑
k

1(ek)⊗ f k(κ) = 1(κ)

C1C2C3|κ = (1⊗ id)1(κ) = (id ⊗1)1(κ) =: 1(2)(κ)

.

.

.

C1C2 . . . CN |κ = 1(N−1)(κ).

The coproducts of a given Hopf algebra are part of the defining relations. Here are the coproducts for the generators
of the algebra (2.3):

1(H) = H ⊗ 1 + 1 ⊗H 1(X±) = X± ⊗ q−H/2 + qH/2 ⊗X±.

Coproducts of other elements can be computed from this using the fact that1 is an algebra homomorphism.
The other objects that constitute a Hopf algebra are the antipodeS and the co-unitε. They enter our
formalism via C−1|κ = S(κ) and 1|κ = ε(κ). Note that ε(κ) is a number. Let1(κ) ≡ κ(1) ⊗ κ(2);
then COC−1|κ = ∑

i,j ρ(ei )Oρ(Sej ) ⊗ (f if j )(κ) = ρ(κ(1))Oρ(Sκ(2)). This action and Hopf expressions

corresponding to equations (2.20)–(2.21) are discussed in [7], for example.
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2.5. Partial quantum symmetry

The full quantum symmetries (2.14) and (2.15) are equivalent to

CihC−1
i |κ = h · 1κ ∀κ ∈ U and C(N)h(C(N))−1|κ = h · 1κ ∀κ ∈ U (2.23)

respectively. We have seen that these full symmetries could be expressed in terms of
commutators. As a further illustration of the formalism we will briefly study the case where
κ does not range over all ofU but only over a subsetP ⊂ U . The question is: when is

ChC−1|κ = h · 1|κ ∀κ ∈ P (partial quantum symmetry) (2.24)

equivalent to

[C, h]|κ = 0 ∀κ ∈ P (2.25)

for an arbitrary Hamiltonianh? A sufficient condition is easily seen to be

AC|κ = 0 ⇔ A · 1|κ = 0 ∀κ ∈ P (2.26)

for all operatorsA (∈ A ⊗ U∗). This can be translated into a condition on the coproducts
of elements inP:

1(P) ⊂ P ⊗ U . (2.27)

3. A generalized Hubbard model

Following [5] we will retain the local electron term (1.3), and add to it the standard
Hamiltonian for the phonons and a phonon–electron interaction term

HHub = H
(loc)
el +Hph +Hel−ph. (3.1)

We suppose that the phonons are described by a set of decoupled Einstein oscillators with
the same frequencyω

Hph =
∑
i

(
p2
i

2M
+ 1

2Mω
2y2

i

)
(3.2)

wherepi and yi obey canonical commutation relations as usual. The expression for the
phonon–electron term is the one given by Hubbard [1]

Hel−ph =
∑
ij

∑
σ

∫
dDr 9∗(r − Ri )

(
−h̄

2∇2

2m
+ V (r, {Rl})

)
9(r − Rj )b

†
jσ biσ (3.3)

where9(r −Ri ) is the Wannier electron wavefunction centred around the ion atRi , while
b

†
jσ , biσ are fermionic creation and annihilation operators. (In this context the Wannier

functions will be approximated by atomic orbitals.) To take account of the ion oscillations
around their equilibrium positions, the arguments of the Wannier functions and of the
potentialV in the integral must be shifted:

Rk → Rk + yk (k = i, j, l).

The term obtained from the potentialV in (3.3) has a significant contribution only for
i = j = l (i.e. neglecting allRl with l 6= i in V ) and results by linear variation in a local
electron–phonon interaction term [8, 9]

H
(loc)
el−ph = −λ ·

∑
i

(ni↑ + ni↓)yi (3.4)

and a term that contributes toµ in (1.3). The non-local electron–phonon interaction term is
crucial in the approach of Montorsi and Rasetti. We would like to give a derivation leading
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directly to the exponential form, which is necessary for the quantum symmetry. (See [10]
for the derivation of a linear approximation.)

We shall retain only the nearest-neighbour terms〈ij〉 in the kinetic energy term of (3.3);
this assumes negligible overlap between all other atomic orbitals:

H
(non-loc)
el−ph =

∑
〈i,j〉

Tij b
†
jσ biσ (3.5)

with Tij = T
†
ji given by

Tij =
∫

dDr 9∗(r − Ri − yi )

(
−h̄

2∇2

2m

)
9(r − Rj − yj ). (3.6)

Assuming that9 has finite support, it is possible to shift the integration variable

r → r − Rj − yj .

With this substitutionTij becomes a function only ofaij ≡ (Ri + yi )− (Rj + yj ):

Tij =
∫

dDr 9∗(r − aij )

(
−h̄

2∇2

2m

)
9(r) = T (aij ). (3.7)

The atomic orbitals show an asymptotic exponential decay

9(r) ∼ e−ζ |r| (3.8)

and we have hence (approximately)

∇aij T (aij ) =
∫

dDr ζ
(r − aij )

|r − aij |9
∗(r − aij )

h̄2∇2

2m
9(r). (3.9)

Again, due to the rapid exponential decay of9(r), we can neglectr in |r − aij | so that

∇aij T (aij ) = −ζ aij

|aij |T (aij ) (3.10)

which integrates to

T (aij ) = T0e−ζ |aij |. (3.11)

|aij | = |Ri − Rj + yi − yj | can be expanded using|yi − yj | � |Ri − Rj | such that finally

Tij = t exp

(
−ζ (Ri − Rj )

|Ri − Rj | (yi − yj )

)
(3.12)

with a new constantt = T0 exp(−ζ |Ri − Rj |). Note that the term

Rij ≡ − (Ri − Rj )

|Ri − Rj |
always has the same module and that in the one-dimensional case it just amounts to a sign.
|Ri − Rj | is the interatomic distance at equilibrium so that it does not depend oni, j . The
complete non-local electron–phonon interaction term in the Hamiltonian is

H
(non-loc)
el−ph = t

∑
〈i,j〉

∑
σ

exp{ζRij · (yi − yj )}b†
jσ biσ (3.13)

and the full Hamiltonian of the Hubbard model with phonons is

HHub = u
∑
i

ni↑ni↓ − µ
∑
i,σ

niσ +
∑
i

(
p2
i

2M
+ 1

2
Mω2y2

i

)
− λ ·

∑
i

(ni↑ + ni↓)yi

+
(
t

∑
〈i<j〉

∑
σ

exp{ζRij · (yi − yj )}b†
jσ biσ + HC

)
. (3.14)



On quantum groups in the Hubbard model with phonons 851

The Hamiltonian considered in [5] is formally obtained (in the one-dimensional case—
see the remark below) from (3.14) by a similarity transformation (half of a Lang–Firsov
transformation [11]) on the fermionic operatorsb†

jσ andbiσ only:

aiσ ≡ U(κ)biσU
−1(κ) (3.15)

a
†
jσ ≡ U(κ)b

†
jσU

−1(κ) (3.16)

with a unitary operator

U(β) ≡ exp

(
iβ ·

∑
l,σ

plnlσ

)
(3.17)

that commutes with the generators ofmagneticSU(2) and depends on a set of constant
parametersβk, k = 1, . . . , D. While this transformation does not change the number
operatorsnl↑ andnl↓, it results in an exponential factor inpi − pj for

b
†
jσ biσ = exp[iκ · (pi − pj )]a

†
jσ aiσ (3.18)

so that the hopping term is now given by

H
(non-loc)
el−ph = t

∑
〈i<j〉

∑
σ

exp{ζRij · (yi − yj )} exp{iκ · (pi − pj )}a†
jσ aiσ + HC (3.19)

or, combining the exponentials,

H
(non-loc)
el−ph = t

∑
〈i<j〉

∑
σ

exp[−h̄ζRij · κ] exp{ζRij · (yi − yj )+ iκ · (pi − pj )}a†
jσ aiσ + HC.

(3.20)

Remark. Note that while theyi commute withb†
iσ , biσ , they do not commute with the

new fermionic creation and annihilation operatorsa†
iσ , aiσ as defined in (3.15), (3.16).

The authors of [5], however, assumed commutativity between the fermionic operators and
coordinates of the ions. In order to be able to connect to their work we will formally replace
the yi in HHub with new coordinatesxi that do commute with thea†

iσ , aiσ . (The xi will
hence no longer commute with theb†

iσ , biσ .) This will of course modify the Hamiltonian.
The Hamiltonian that wewill work with in the next section is:

H = H(loc) +H(non-loc) (3.21)

with

H(loc) = u
∑
i

ni↑ni↓ − µ
∑
i,σ

niσ +
∑
i

(
p2
i

2M
+ 1

2
Mω2x2

i

)
− λ ·

∑
i

(ni↑ + ni↓)xi (3.22)

H(non-loc) = t
∑
〈i<j〉

∑
σ

exp{ζRij · (xi − xj )} exp{iκ · (pi − pj )}a†
jσ aiσ + HC. (3.23)

The relation of this Hamiltonian with the one of the Hubbard model with phonons (3.14)
will be discussed in section 5. The fact thatHHub andH are inequivalent can, for instance,
be seen by noting that the expression

T̃ij = t exp{ζRij · (xi − xj )} exp{iκ · (pi − pj )}
for the hopping amplitude in (3.23) does not satisfy the conditionT̃j i = T̃

†
ij so that∑

〈i,j〉 T̃ij a
†
jσ aiσ is no longer Hermitean.
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4. SuperconductiveUqsu(2)

The local superconductiveUq(su(2)) is given by

ρs(X
+) = K

(+)
l = b

†
l↑b

†
l↓ = exp(−iΦ · pl)a

†
l↑a

†
l↓ (4.1)

ρs(X
−) = K

(−)
l = bl↓bl↑ = exp(iΦ · pl)al↓al↑ = (K

(+)
l )† (4.2)

ρs(H) = 2K(z)
l = nl↑ + nl↓ − 1. (4.3)

These are the generators for transformations of an individual lattice sitel, as defined in (2.6).
They are expressed in terms of the operatorsblσ , b

†
lσ . In order to compute the commutation

relations with Hamiltonian (3.21) it is necessary to express them in terms of operators
alσ , a

†
lσ as introduced in (3.15) and (3.16). The parameterβ appearing in (3.17), on which

the transformation depends, is chosen here to beΦ/2 and, for the moment, it should be
regarded as a free parameter which will be determined by the commutation relations. We
will see later (4.33) that consistently with the choiceβ = κ made in equations (3.15) and
(3.16), the commutation relations will requireΦ = 2κ. (Notice thatnlσ = a

†
lσ alσ = b

†
lσ blσ .)

To describe the symmetries of the Hubbard model with phonons it is necessary to
consider two distinct representations of the superconductiveUq(su(2)) for different lattice
sites. One (ρ+

s ) is equal toρs , the other (ρ−
s ) differs from ρs by a minus sign on the

generatorsX±:

ρ±
s (X

+) = ±ρs(X+) ρ±
s (X

−) = ±ρs(X−) ρ±
s (H) = ρs(H). (4.4)

For each lattice sitel a signσ(l) ∈ {1,−1} is chosen and the representationρ+
s or ρ−

s

is associated to it depending on whetherσ(l) = 1 or σ(l) = −1 respectively. The local
commutation relations are not affected by this choice. The sign will, however, be crucial
for the global commutation relations. Hence, for the moment we will not specify a rule for
assigning a representation to a given site, but we will see later (4.29) that sites corresponding
to nearest neighbours must have opposite representationsρ+ andρ−. This is exactly what
happens in the classical case [3]. For orthogonal (square) lattices a choice of the sign which
implements this condition is

σ(l) = (−1)‖l‖ (4.5)

where‖l‖ = ∑D
n=1 ln is the length of the indexl which labels the sitel.

For the moment we will choose an arbitrary ordering of the lattice sites. Choosing an
ordering is necessary to be able to define a tensor product and hence to construct a global
symmetry. According to the definition of the coproduct inUq(su(2)) (see equation (2.22)
and footnote on p 848)

1(X+) = e
1
2αH ⊗X+ +X+ ⊗ e− 1

2α
∗H (4.6)

1(X−) = e
1
2α

∗H ⊗X− +X− ⊗ e− 1
2αH = (1(X+))† (4.7)

1(H) = H ⊗ 1 + 1 ⊗H (4.8)

where the deformation parameter is chosen to beq = eα andα is a complex parameter to
be determined by the commutation relations and through the representationsρ±

s we obtain
the generators of global superconductiveUq(su(2))

K(+) =
⊗
l

ρσ(l)s (1(N−1)(X+)) (4.9)

K(−) =
⊗
l

ρσ(l)s (1(N−1)(X−)) = (K(+))† (4.10)

K(z) =
⊗
l

ρσ(l)s (1(N−1)(H)) (4.11)



On quantum groups in the Hubbard model with phonons 853

whereN is the number of lattice sites. Using (4.6)–(4.8) these generators are computed to
be

K(+) =
∑
l

σ (l)
∏
r<l

exp(αK(z)
r )K

(+)
l

∏
r>l

exp(−α∗K(z)
r ) (4.12)

K(−) =
∑
l

σ (l)
∏
r<l

exp(α∗K(z)
r )K

(−)
l

∏
r>l

exp(−αK(z)
r ) = (K(+))† (4.13)

and

K(z) =
∑
l

K
(z)
l . (4.14)

4.1. Local commutation relations

The local part of the Hamiltonian commutes with the local generators

[K(+)
l , H (loc)] = [K(−)

l , H (loc)] = [K(z)
l , H

(loc)] = 0 (4.15)

if the following conditions hold

Φ = 2λ

h̄Mω2
(4.16)

µ = u

2
− 1

4
Mω2h̄282 = u

2
− λ2

Mω2
. (4.17)

4.2. Global commutation relations

The fact thatK(z) commutes withH(non-loc) given by (3.23) is immediate. We must calculate

[K(+), H (non-loc)] =
[ ∑

l

σ (l)
∏
r<l

exp(αK(z)
r )K

(+)
j

∏
r>l

exp(−α∗K(z)
r ),

t
∑
〈i<j〉

∑
σ

exp[ζRij · (xi − xj )] exp[iκ · (pi − pj )]a
†
jσ aiσ

]
. (4.18)

It can be seen that

[exp(−iΦ · pl), exp[ζRij · (xi − xj )]] = 2 sinh( 1
2ζh̄Rij · Φ)(δl,j − δl,i)

× exp[−iΦ · pl + ζRij · (xi − xj )] (4.19)

[a†
l↑a

†
l↓, a

†
j↑ai↑ + a

†
j↓ai↓] = −δl,i(a†

j↑a
†
i↓ + a

†
i↑a

†
j↓) (4.20)

exp(αK(z)
i ) = 1 + 2K(z)

i (1 − exp(−α/2))+ 2ni↑ni↓(cosh(α/2)− 1) (4.21)

and, using equation (4.21),

[exp(αK(z)
l ), a

†
j↑ai↑ + a

†
j↓ai↓] = (a

†
j↑ai↑ + a

†
j↓ai↓)(δl,j − δl,i)(1 − e−α/2)

+(δl,j (a†
j↑ai↑nj↓ + nj↑a

†
j↓ai↓)

−δl,i(a†
j↑ai↑ni↓ + ni↑a

†
j↓ai↓))(e

α/2 + e−α/2 − 2). (4.22)

We introduce the abbreviation

Zij = σ(i)exp[−i(Φ − κ) · pi − iκ · pj + ζRij · (xi − xj )]

×
∏

r<i,r 6=j
exp(αK(z)

r )
∏

r>i,r 6=j
exp(−α∗K(z)

r ). (4.23)
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Splitting the commutators, evaluating the expressions that are obtained by the use of (4.19)–
(4.22), and using the delta functions which appear in (4.19), (4.20) and (4.22) to perform
some of the sums, it can be seen that (4.18) becomes
[K(+), H (non-loc)] = t

∑
〈i<j〉

exp(−h̄ζRij · κ){(a†
i↓a

†
i↑a

†
j↓a

†
j↑ai↑aj↓ − a

†
i↓a

†
i↑a

†
j↓a

†
j↑ai↓aj↑)

×[Zij (2 cosh( 1
2Rij · Φζh̄)− 2 cosh( 1

2Rij · Φζh̄+ 1
2α

∗))

+Zji(2 cosh( 1
2Rij · Φζh̄)− 2 cosh( 1

2Rij · Φζh̄+ 1
2α))]

+(a†
i↑a

†
j↓a

†
j↑aj↑ + a

†
i↓a

†
j↓a

†
j↑aj↓)exp( 1

2Rij · Φζh̄)
×[Zij (exp( 1

2α
∗)− 1)+ Zji(exp(−Rij · Φζh̄) exp(− 1

2α)− 1)]

+(a†
i↓a

†
i↑a

†
j↓ai↓ + a

†
i↓a

†
i↑a

†
j↑ai↑)exp(− 1

2Rij · Φζh̄)
×[Zij (exp(Rij · Φζh̄) exp( 1

2α
∗)− 1)+ Zji(exp(− 1

2α)− 1)]

+(a†
i↓a

†
j↑ − a

†
i↑a

†
j↓)[Zijexp( 1

2Rij · Φζh̄) exp( 1
2α

∗)

+Zjiexp(− 1
2Rij · Φζh̄) exp(− 1

2α))]}
+

∑
l

∑
〈i,j〉,i<l<j

σ (l) exp(−h̄ζRij · κ) exp(−iΦ · pl)a
†
l↑a

†
l↓

×
∏

r<l,r 6=i
exp(αK(z)

r )
∏

r>l,r 6=j
exp(−α∗K(z)

r )

×[exp(αK(z)
i ) exp(−α∗K(z)

j ), exp[iκ · (pi − pj )

+ζRij · (xi − xj )]a
†
j↑ai↑ + a

†
j↓ai↓ + HC]. (4.24)

There are two sums containing six fermionic operators, four sums containing four fermionic
operators, and two sums containing two fermionic operators. These sums must all be
separately zero, because they depend on different numbers of such operators and hence are
linearly independent. Let us study the term containinga

†
i↓a

†
j↑ − a

†
i↑a

†
j↓:∑

〈i<j〉
(a

†
i↓a

†
j↑ − a

†
i↑a

†
j↓)[Zijexp( 1

2Rij · Φζh̄) exp( 1
2α

∗)+ Zjiexp(− 1
2Rij · Φζh̄) exp(− 1

2α)].

(4.25)
The above sum can vanish only if each term with fixedi, j is separately zero, because
there are no other terms which containa†

i↓a
†
j↑ − a

†
i↑a

†
j↓. Therefore it is necessary that the

expression between the square brackets is zero. For this reason we must require
Zijexp( 1

2Rij · Φζh̄) exp( 1
2α

∗)+ Zjiexp(− 1
2Rij · Φζh̄) exp(− 1

2α) = 0. (4.26)
This is equivalent to the set of equations

Zij = −Zji (4.27)

exp( 1
2Rij · Φζh̄) exp( 1

2α
∗) = exp(− 1

2Rij · Φζh̄) exp(− 1
2α) (4.28)

which in turn imply (i, j are nearest neighbours)
σ(i) = −σ(j) (4.29)

exp[−i(Φ − κ) · pi − iκ · pj + ζRij · (xi − xj )]

= exp[−i(Φ − κ) · pj − iκ · pi + ζRij · (xi − xj )] (4.30)∏
r<i

exp(αK(z)
r )

∏
r>i,r 6=j

exp(−α∗K(z)
r ) =

∏
r<j,r 6=i

exp(αK(z)
r )

∏
r>j

e(−α∗K(z)
r ) (4.31)

exp(− 1
2i Im α)(exp( 1

2Rij · Φζh̄) exp( 1
2 Reα)− exp(− 1

2Rij · Φζh̄) exp(− 1
2 Reα)) = 0.

(4.32)
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Equation (4.29) means that nearest neighbours must have opposite signs. As we have
already anticipated, this means that in order for the global commutation relations to hold,
it should be possible to see the lattice3 on which the model is defined, as the sum of two
lattices31,32, such that nearest neighbours are always on different lattices. This gives a
restriction on the possible lattices, e.g. a triangular lattice could not be chosen.

Equation (4.30) impliesκ − Φ = −κ and hence

2κ = Φ. (4.33)

This is one condition that must be satisfied for expression (4.25) to vanish. In particular it
fixes the parameter of the transformation (3.17). It turns out, that the parameter has to be
the same as the one used to transform the fermionic operators in the Hamiltonian.

Equation (4.32) implies

Reα = −Rij · Φζh̄. (4.34)

This is the second condition which must be satisfied for expression (4.25) to vanish. It is
important to notice that it is possible to fulfil this relation only if the ordering of the lattice
sites is chosen to be the lexicographic one. So this imposes a first restriction on the ordering
of the sites.

The strongest relation is (4.31)—it depends crucially on the ordering chosen for the
lattice sites. In order for (4.31) to hold it is necessary that∏

i<r<j

exp(αK(z)
r ) =

∏
i<r<j

exp(−α∗K(z)
r ). (4.35)

Let us apply (4.21) to expand the exponentials. Then we obtain an expression of the type

1 + 2(1 − e−α/2)
∑
i<r<j

K(z)
r + · · · = 1 + 2(1 − eα

∗/2)
∑
i<r<j

K(z)
r + · · · . (4.36)

(Here the terms which are indicated with ‘· · ·’ are at least quadratic in theK(z)
r and therefore

are independent of the first-order terms which have been written.) Equation (4.36) shows
that in order for relation (4.35) to hold, it is necessary that

e−α/2 = eα
∗/2 ⇒ Re(α) = 0.

But this would mean that the coproduct should be symmetric, and this is against the
hypothesis that there is a true quantum symmetry.

This shows that we must look for a condition on the ordering of the lattice sites, so that
we do not need to require (4.35): there cannot be any siter which satisfies the condition
i < r < j for any couple of nearest neighboursi, j . In other words it is necessary that if
i, j is a couple of nearest neighbours then

(i < r ⇒ j 6 r, i > r ⇒ j > r) ∀r. (4.37)

However, condition (4.37) implies that the lattice3 on which the Hubbard model is defined
is one dimensional, and that the ‘normal’ ordering of the sites is chosen, in which the sites
are numbered from left to right in increasing or decreasing order.

It can be verified immediately that condition (4.37) issufficientto guarantee that the sum
with ‘

∑
l

∑
〈i,j〉,i<l<j ’ is not present, because there is no longer anyl satisfyingi < l < j .

In fact it can be verified with arguments similar to the ones used to study the term (4.25)
that (4.37) is alsonecessaryfor such a sum to vanish. Because of (4.31) and (4.30) it
is possible to combine the terms which contain the same products of fermionic operators.
Further, it can be seen immediately, that conditions (4.29), (4.33), (4.34) and (4.37) are
also necessary and sufficient for the sums with four and with six fermionic operators to
vanish. Thus in order for the HamiltonianH(non-loc) (3.23) to commute with the generators
(4.12)–(4.14) ofUq(su(2)) the conditions (4.29), (4.37), (4.33), (4.34) are necessary and
sufficient.
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5. Discussion

The computation of the previous section has shown that the HamiltonianH , given for a
D-dimensional lattice in (3.21)–(3.23), commutes with the generators of (global)Uqsu(2),
q ≡ eα, provided that local conditions (4.16), (4.17), global conditions (4.33), (4.34) and
eitherD = 1 or α = 0 hold. (We will only consider Im(α) = 0 here.) We are now in a
position to comment on the symmetries† of various Hamiltonians derived from the Hubbard
model:

HHub (3.14) coincides with (3.21)–(3.23) for the particular choice of parameterκ = 0.
The global conditions (4.33), (4.34) implyΦ = 0, α = 0 and henceq = 1. The local
conditions (4.16), (4.17) implyλ = 0 andµ = u/2. We conclude that the Hubbard model
with phonons (3.14) has no true quantum symmetry—not even in the one-dimensional case;
it has an ordinarySU(2) symmetry provided that there is no local electron–phonon coupling
(λ = 0).

The HamiltonianH (3.21) studied in the previous section and considered by [5] is
formally obtained from the Hubbard model with phonons by a Lang–Firsov transformation
on the fermionic operators only. (See remark at the end of section 3.) The essential
difference betweenHHub andH is thatHHub uses coordinatesyi that commute withb†

iσ , biσ

while H is written in terms of new coordinates that commute witha†
iσ and aiσ (and not

with b†
iσ , biσ ). To be able to compare the two Hamiltonians we have to relate the sets of

coordinates. This is simply done by a Lang–Firsov transformation‡ (see (3.15)–(3.17))
xi = U(κ)yiU

−1(κ). (5.1)
The new coordinates are found to be

xi = yi + h̄κ
∑
σ

niσ (5.2)

i.e. the position of the ion at lattice sitei is shifted according to the number of electrons at
that site. ExpressingH in terms ofyi, b

†
iσ , biσ we find

Hq−sym = u′ ∑
i

ni↑ni↓ − µ′ ∑
i,σ

niσ +
∑
i

(
p2
i

2M
+ 1

2
Mω2y2

i

)
− λ′ ·

∑
i

(ni↑ + ni↓)yi

+
(
t

∑
〈i<j〉

∑
σ

exp{ζRij · (yi − yj )} exp(−ζh̄Rij · κ)b
†
jσ biσ

×(1 + (exp(ζh̄Rij · κ)− 1)ni,−σ )(1 + (exp(−ζh̄Rij · κ)− 1)nj,−σ )+ HC)

(5.3)
with a set of new parameters

λ′ = λ −Mω2h̄κ (5.4)

u′ = u− 2h̄λ · κ +Mω2h̄2κ2 (5.5)

µ′ = µ+ h̄λ · κ − 1/2Mω2h̄2κ2. (5.6)
The model given byHq−sym (5.3) has a true quantum symmetry (in the one-dimensional
case). The local conditions (4.16), (4.17) for quantum symmetry expressed in terms of the
new parameters are

λ′ = 0 µ′ = u′/2. (5.7)
There is apparently no local coupling to the phonons and the condition for symmetry is
‘half filling’ as in the standard Hubbard model.

† The Hamiltonian will commute withall elements ofUqSU(2) provided that its generators do so; this is equivalent
to a full quantum symmetry (under quantum adjoint action), see section 2.
‡ This observation is also supported by the choice ofK

(±)
l , K

(z)
l .
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